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SUMMARY 

A data processing method is described which reduces the effects of tl noise artifacts and improves the pre- 
sentation of 2D N M R  spectral data. A t~ noise profile is produced by measuring the average noise in each 
column. This profile is then used to determine weighting coefficients for a sliding weighted smoothing filter 
that is applied to each row, such that the amount of smoothing each point receives is proportional to both 
its estimated t~ noise level and the level of t~ noise of neighbouring points. Thus, points in the worst tj noise 
bands receive the greatest smoothing, whereas points in low-noise regions remain relatively unaffected. In 
addition, weighted smoothing allows points in low-noise regions to influence neighbouring points in noisy 
regions. This method is also effective in reducing the noise artifacts associated with the solvent resonance in 
spectra of biopolymers in aqueous solution. Although developed primarily to improve the quality of 2D 
N M R  spectra of biopolymers prior to automated analysis, this approach should enhance processing of 
spectra of  a wide range of compounds and can be used whenever noise occurs in discrete bands in one dimen- 
sion of  a multi-dimensional spectrum. 

INTRODUCTION 

Bands of tt noise and ridges constitute significant artifacts in frequency-domain 2D NMR spec- 
tra of biopolymers in aqueous solution, especially those recorded on older spectrometers, and can 
be major impediments to automated spectral analysis. The causes of some of the artifacts (Mehl- 
kopf et al., 1984) have been minimised or eliminated by improvements in spectrometer hardware 
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and software and in techniques for spectral acquisition (Turner and Patt, 1989; Simorre and 
Marion, 1990). Nevertheless, NMR studies of biopolymers are not only being extended to more 
demanding applications such as dilute solutions and/or larger molecules, but there is also a trend 
towards recording spectra without complete phase cycling in order to minimise acquisition time 
(Marion et al., 1989a). These developments suggest that spectra in which the intensities of the 
weakest signals are comparable to those of spectral artifacts will continue to be a feature of bio- 
polymer NMR and, therefore, that spectral processing methods to reduce or eliminate artifacts 
will continue to be of value. 

One of the first techniques that provided some improvement in processed 2D spectra was sym- 
metrization (Baumann et al., 1981), but this suffered from drawbacks associated with the possible 
loss of real peaks or the creation of false ones, and is now rarely used. In recognition of the impor- 
tant link between strong diagonal peaks and tt noise and ridges, a spectral acquisition scheme that 
resulted in diagonal suppression was developed by Denk et al. (1985), but required long spectral 
acquisition times. Difference methods have also been proposed that involve the subtraction of an 
average t l ridge from each row (Klevit, 1985) or each column (Glaser and Kalbitzer, 1986). 

A significant improvement came with the recognition that t~ ridges arose from incorrect weight- 
ing of the first time-domain point in tl (Otting et .al:, 1986). Ridges could be suppressed by record- 
ing spectra with sine modulation in t~ and transforming the data with sine Fourier transform, or 
by correcting the first time-domain point of data acquired with cosine modulation by dividing by 
two (Otting et al., 1986) or by means of linear prediction (Marion and Bax, 1989). The sampling 
delay can also be adjusted to exactly one-half of a dwell time (Bax et al., 1991). 

.The problem oftt  noise remains even after implementation of these methods, and is particularly 
important in automated peak igicking (Eccles et al., 1991; Kleywegt et al., 1991; Oschkinat et al., 
1991), because a large number of false peaks from regions of t t noise are selected. In order to dis- 
tingiaish real peaks from noise, the EASY software package (Eccles et al., 1991) applies a user- 
defined linewidth minimum. In our experience this approach is not uniformly successful in dis- 
tinguishing between tl noise spikes and real peaks. Using peak picking routines based on this prin- 
cipal and written in this laboratory, we found that there was always a compromise between losing 
sharp real peaks and allowing too many tt noise spikes to be interpreted as real peaks. In the peak 
picking routines described in the S'TELLA suite of programs (Kleywegt, 1991), the program 
LEARN2 is taught to distinguish between real peaks and noise. This method should work well if 
all the peaks in the spectrum have similar linewidths, but rriay encounter problems if the line- 
widths span a wide range or if peaks are significantly distorted by noise. The method for suppres- 
sion of tl noise described in this paper uses an appro/ach based on weighted smoothing of the 2D 
spectrum. 

PRINCIPLE OF OPERATION 

The measured intensity at any point of a processed 2D spectrum can be considered to consist 
of the real value and an error component. The error component is due to many factors, including 
thermal noise, tl noise, and offsets and ridges in both col and tn2. Baseplane correction can reduce 
the effects of ridges and offsets, but a combination of thermal noise and tl noise remains. Whereas 
thermal noise is distributed evenly throughout the spectrum, tl noise occurs in discrete bands in 
co~ and it is on this distinction that our method is based. It assumes that each point in any given 
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column has the same error limits, which can be estimated by measuring the average noise for that 
column. If this is repeated for every column, a tl noise profile is obtained that resembles a ID 
spectrum. Having this estimate for the average noise in each column enables the application of 
weighted smoothing to each row, where the smoothing co-efficients are derived from the average 
noise estimates. This procedure selectively smooths points in areas of high noise, while leaving the 
points in low-noise areas relatively unaffected. Unlike traditional smoothing techniques, which 
weight each point equally, weighted smoothing operates on each point relative to its error compo- 
nent and the error components of its neighbouring points. This allows points in low-noise regions 
to influence neighbouring points in noisy regions. The sliding weighted smoothing filter, as used 
here, is a simple variation on the three-point averaging filter. It is repeated a number of times, al- 
lowing additional neighbouring points to influence the value of the current point. 

COMPUTATIONAL IMPLEMENTATION 

An accurate measurement for the average noise in each column is necessary, and various proce- 
dures for achieving this were considered. The first measured the average noise based on a small, 
operator-defined section of each column, but was limited by its dependence on the operator to 
define a region that did not contain any real peaks. Another method based the average noise es- 
timate just on the negative peaks, but this relied on all the real peaks in the dataset being purely 
absorptive. The method finally chosen is based on a statistical analysis of the data. In a simple 
converging iterative loop, all resolvable real peaks for each column are identified and the average 
noise is estimated based on all remaining peaks, which are assumed to be due to noise. As there 
is overlap between the distribution of real peaks and the distribution of noise peaks, it is necessary 
to decide at what level real peaks can be distinguished from noise. Based on experience with seve- 
ral 2D data sets, an arbitrary value of three times the average noise was chosen. This factor of 
three is the default value for a user-defined parameter, rl, which represents the spread of the noise 
around the average value. 

The software routine ANI (for Average Noise) operates on every column in the matrix, sequen- 
tially. It determines the intensity of every peak, where a peak is defined as the maximum absolute 
value between two zero crossings, and stores these in an array, Aj. A simple converging iterative 
loop is then used which progressively removes all resolvable real peaks from the array. In each 
pass the average noise is calculated by 

n j = l  

where n is the number of peaks. The first pass estimate will be either greater than or equal to the 
real value for the average noise, depending on the density and amplitude of real peaks. The intens- 
ity of every peak, that is the data in A i, is compared with rlNi. Any peak having a value greater 
than rlNi is identified as a real peak and removed from Aj, and has no further influence on the 
average noise measurement. Ni is then re-calculated using Eq. 1 based on the remaining peaks, 
giving a value that is less than the previous estimate. The process is repeated, with each iteration 
giving a lower value until the process converges on a final value for a given column that represents 
Ni for that column. In practice, the iterative procedure is stopped when Ni changes by less than 1% 
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from the value of the previous iteration. In the NOESY and TOCSY spectra described below, 
fewer than four iterations were required for most columns. Columns that contained no real peaks 
converged in the first iteration. A plot of Ni for each column in the 2D matrix produces the tl 
noise profile spectrum. The final values for Ni and rl are used to derive an important quantity, ei, 
given by 

8i =rlNi (2) 

This defines the error limits such that the real value for any point i is estimated to be within the 
region of the measured value plus or minus el. 

Once the tl noise profile is determined, the software routine RT1 (reduce tt noise), which is a 
weighted smoothing routine, can be applied. It uses the tl noise profile in two ways: firstly to de- 
termine the smoothing coefficient for a weighted smoothing filter that is applied to each point, al- 
lowing the better resolved points to influence neighbouring points in noisy areas, and secondly to 
limit the amount by which any point can change to ei. RT1 operates on each row of a 2D matrix, 
one at a time. It will only change the value of points in regions where the noise level is higher than 
an operator-defined threshold level given by 

L = T 8min (3) 

where emi n is the lowest ei for the matrix, which can be considered to be the thermal noise level, 
and the parameter, T, is operator defined. Only points that have a value for ei greater than L will 
have their intensities changed by weighted smoothing (even though all points are used in the 
smoothing procedure). Thus, ifa very high value for T is chosen, only the points in the worst areas 
o fh  noise will be affected by smoothing. 

Prior to weighted smoothing, the absolute intensity of any point, i, to be smoothed is reduced by 
an amount equal to el, and any point having an absolute intensity less than its expected ei is set to 
zero. This can be visualised as starting the weighted smoothing process at the minimum intensity 
estimated to be real (zero for any point whose intensity is less than its ei) and allowing the 
weighted smoothing filter to progressively correct each point to be smoothed under the influence 
of both the intensities and the ei values of neighbouring points. Of course, the smoothing process 
can only increase the absolute value of any point from this starting value as each point is main- 
tained within a band of its initial measured value plus orminus its ei. This is necessary to account 
for the broad areas of high tl noise such as the band around the residual water resonance, where 
the influence of better resolved neighbouring points~s negligible and the noise intensity is high. 

The tt noise is then reduced along each row using a three-point smoothing filter that is weighted 
according to the t~ noise profile, where the corrected value Pie of the i-th point, Pi, is given by 

2 SiPi+(l -Si)  Si_ 1 Pi_I+(I -Si)  Si+l Pi+l 
Pie = 

2 S i + ( l - S i )  S i - l + ( l - S i )  Si+t 
(4) 

This is a simple variation on the sliding three-point averaging filter, with additional terms added 
for weighted smoothing. The value for the smoothing coefficient, Si, at any point, i, is given by 
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Si = L/gi  (5)  

where Si is restricted to a maximum of 1.0. From Eq. 5, it is evident that if ei for point, Pi, is less 
thanL, then Si will be set equal to 1.0 and Eq. 4 will reduce to Pie = Pi, i.e. such points will not be 
changed by weighted smoothing. Also from Eq. 4, it is evident that points in high noise areas will 
be influenced by neighbouring points in lower noise areas. The weighted smoothing process is re- 
peated for a number of user-defined iterations which increases the size of the weighted filter and 
allows a greater number of neighbouring points to influence each point that is smoothed. Finally, 
during weighted smoothing, a restriction is placed on each point such that its final intensity will 
not be varied by more than its ~i from its initial measured intensity. 

The current version of RT1 has three user-defined parameters. Of these, only the threshold 
parameter, T, needs to be modified in most cases. A low value is best suited to preparation of 
datasets for peak picking and automated sequential assignment. Varying the second user-defined 
parameter, rl, from the default value of three may be necessary in situations where the range of the 
tl noise in any column is high, leading to inadequate tt noise suppression and persistence of the 
worst t~ noise spikes. The third parameter is the number of smoothing iterations, which has a 
default value of 10. 

A major requirement for successful tl noise suppression using this method is a fiat baseplane; 
ideally one where all noise is distributed evenly above and below the zero level. Tn the present 
work this was achieved using BFX (for Baseline FIX), a baseline correction routine developed in 
our laboratory which is similar in some respects to the baseline correction methods described by 
Pearson (1977) and Dietrich et al. (1991). This will be described elsewhere. 

RESULTS AND DISCUSSION 

The tl noise suppression routines have been tested using 2D data on ATX III, a 27-residue poly- 
peptide toxin isolated from the sea anemone Anemonia sulcata (Beress et al., 1975). The software 
modules were incorporated in the program FELIX (version 1.1B) from Hare Research Inc. 
running on Iris 4D/20 and 4D/70 workstations. All code was written in FORTRAN 77. 

The tj noise profile obtained for a TOCSY spectrum of ATX III in H20 is shown in Fig. lB. As 
expected, the worst regions correspond to the large, sharp diagonal peaks and overall the tl noise 
profile resembles the matrix diagonal (Fig. IA). RT1 uses the tl noise profile to apply weighted 
smoothing relative to the threshold parameter, T. Figure 2 illustrates the effect of using different 
values for T on a row (Fig. 2A) from the TOCSY spectrum described in Fig. 1. In Fig. 2B, where 
a value of 50 was used, only points in the worst tl noise regions were affected, most points remain- 
ing unchanged. The effect of setting T equal to 10 is shown in Fig. 2C. There is significant im- 
provement without loss of fine structure. The result of taking weighted smoothing to the extreme 
by setting T to 1 is shown in Fig. 2D. 

Figure 3A shows the TOCSY spectrum of ATX III in H20, to which BFX has been applied in 
two steps as described above. Figure 3B is the same spectrum as shown in Fig. 3A, plotted at the 
same level, but after the application of ANI and RT1. The tl noise artifacts, including the noise 
associated with the water resonance, have been eliminated almost completely. Peak picking from 
the spectrum in Fig. 3B, whether manual or automated, is significantly simplified. Furthermore, 
suppression of the residual resonance has been achieved without any significant suppression of 
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Fig. 1. Correlation between diagonal peaks and h noise profile in a TOCSY spectrum of ATX Ill. The sample contained 
5.1 mg ofATX III in 0.5 ml of 90~ H20/10% D20 at pH 2.4 and 27°C. The spin lock time was 80 ms. A total of 512 tt val- 
ues were collected on a Bruker AM-500 spectrometer. Data were processed with 90°-shifted sine squared bells over 2048 
points in co2 and 485 in to1. BFX was used after the first FT and again on every row of the fully transformed matrix. In- 
tensities around the water resonance have been truncated in the plot. (A) Matrix diagonal. (B) t~ Noise profile for the ma- 
trix determined by measuring and plotting the average noise in each column (vertical scale plotted 1000 x relative to A). 

real peaks nearby. This is emphasi~zed in Fig. 4, which shows an expansion of  the small boxed 
region close to the water resonance in Fig. 3. The only cross peaks expected in this region are the 
N H  to Call  peaks of  Ser 2 and Glu 2° (Norton,  Cross, Braach-Maksvytis  and Beress, to be publish- 

ed), and indeed these are the only two peaks remaining after the application of  tl noise suppres- 

sion. This is in contrast  to some other post-acquisition water suppression methods (Kuroda  et al., 
1989; Marion et al., 1989b), in which peaks in the ¢icinity of  the water resonance are eliminated 

by the application of  a filter that reduces the intensity of  all points close to the water  resonance. 
Other post-acquisition methods improve the region close to the water resonance by reducing 

baseline distortions in spectra containing strong dispersive water signals (Tsang et al., 1990; Adler 

and Wagner, 1991). This type of  baseline distortion has not been a significant problem in our 
spectra, but if there were a strong dispersive water  signal, it would need to be corrected before the 
application of  A N I  and RTI .  The method proposed by Adler and Wagner  (1991) would be well 
suited for this purpose, as useful information around the water resonance is not discarded. 

Our  procedure for measuring the average noise, ANI ,  has a potential  limitation in spectra with 
very high densities of  real peaks. Indeed, any method of  noise measurement  would be limited in 



491 

A 

I I I I I I 

10,0 8,0 6,0 4,0 2,0 0,0 
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Fig. 2. Effect of  using different values for the threshold parameter, T, in the tj noise suppression routine, RTI.  Default pa- 
rameters of  3 for 1] and I 0 for the number of  smoothing iterations were used. (A) Typical base corrected row (at 1.70 ppm) 
of  the TOCSY spectrum described in Fig. 1. (B) Same as A, but after application of  RTI with T = 50. The weighted 
smoothing routine selectively smooths points that have a noise component  greater than 50 x e,i .  and the smoothing is 
weighted depending on that noise component.  (C) Same as B, but with T = I0. (D) Same as B, but with T = 1. 

this extreme case. However, this problem has not been observed as yet and is much less severe 
than first envisaged since, even in spectra having a high density of real peaks, the ratio of the 
number of noise peaks to real peaks is still high. 

The potential of weighted smoothing to alter cross-peak volumes has been examined using a 
sample of cross peaks that included strong peaks and weak peaks in regions of both moderate and 
extreme tl noise of a NOESY spectrum of ATX III in H20. Using a high value of 30 for T, which 
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Fig. 3. Results  o f  applying A N I  and R T I  to the T O C S Y  spectrum o f  A T X  III in H 2 0  described in Fig. 1. (A)  Matrix  prior 
to the appl icat ion of  A N I  and R T  I. (B) Same  as A (and plotted at the same  level), but after appl icat ion of  the t~ noise  sup- 
pression routines with T set at  2. 
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Fig. 4. Expanded views of the boxed regions of Fig. 3, illustrating the improvements in peak recognition. (A) Section of 
spectrum in Fig. 3A. (B) Corresponding section from Fig. 3B. Based on the level of noise in this region only two peaks 
could be resolved and the peaks were resolved as single peaks. These peaks were the only peaks expected in this region, 
with peak 1 corresponding to the NH-CQH connectivity of Glu 2° and peak 2 to NH-CaH of Ser 2. 
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is suitable for processing NOESY spectra for volume measurements, only 20% of the cross-peak 
volumes were changed at all, with the most significant change being 3%. Even in the extreme case, 
where a value of I was used for the threshold parameter, most cross-peak volumes changed by less 
than 15%, the most significant change being 37%. In fact, the information provided by the tl noise 
profile can also be used in deriving distance constraints from NOESY cross-peak volume 
measurements. A volume error estimate can be determined for each peak using the t~ noise profile, 
and then this can be used to select the more reliable of a symmetric pair of cross peaks by basing 
the distance calculation on the peak with the lower volume error estimate. In addition, upper and 
lower distance bounds can be loosened or tightened, based on the volume error estimates. 

The execution time of the routines depends on both the quality of the spectral data and the pa- 
rameters defined by the user. Applying the routines within a FELIX macro to a 2K by 2K matrix 
on an Iris 4D/20, base correction to every row using BFX requires 5-10 min, while using ANI to 
determine the tl noise profile requires about 2 min, and using RTI to suppress tl noise requires 5-  
10 min. A copy of the source code for the routines described in this paper is available from the 
authors. 
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